Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93.186
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 148, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582886

RESUMEN

BACKGROUND: Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations. RESULTS: We describe a large family including 95 maternally related individuals, showing 30 patients with Leber hereditary optic neuropathy. The mutation responsible for the phenotype is a novel transition, m.3734A > G, in the mitochondrial gene encoding the ND1 subunit of respiratory complex I. Molecular-genetic, biochemical and cellular studies corroborate the pathogenicity of this genetic change. CONCLUSIONS: With the study of this family, we confirm that, also for this very rare mutation, sex and age are important factors modifying penetrance. Moreover, this pedigree offers an excellent opportunity to search for other genetic or environmental factors that additionally contribute to modify penetrance.


Asunto(s)
ADN Mitocondrial , Atrofia Óptica Hereditaria de Leber , Humanos , ADN Mitocondrial/genética , Atrofia Óptica Hereditaria de Leber/genética , Linaje , Mutación/genética , Fenotipo
2.
Mol Vis ; 30: 49-57, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586605

RESUMEN

RPGR pathogenic variants are the major cause of X-linked retinitis pigmentosa. Here, we report the results from 1,033 clinical DNA tests that included sequencing of RPGR. A total of 184 RPGR variants were identified: 78 pathogenic or likely pathogenic, 14 uncertain, and 92 likely benign or benign. Among the pathogenic and likely pathogenic variants, 23 were novel, and most were frameshift or nonsense mutations (87%) and enriched (67%) in RPGR exon 15 (ORF15). Identical pathogenic variants found in different families were largely on different haplotype backgrounds, indicating relatively frequent, recurrent RPGR mutations. None of the 16 mother/affected son pairs showed de novo mutations; all 16 mothers were heterozygous for the pathogenic variant. These last two observations support the occurrence of most RPGR mutations in the male germline.


Asunto(s)
Proteínas del Ojo , Retinitis Pigmentosa , Humanos , Proteínas del Ojo/genética , Linaje , Mutación , Mutación del Sistema de Lectura , Trastornos de la Visión , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología
3.
Medicine (Baltimore) ; 103(16): e37702, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640279

RESUMEN

RATIONALE: Hereditary hearing loss is known to exhibit a significant degree of genetic heterogeneity. Herein, we present a case report of a novel mutation in the tenascin-C (TNC) gene in Chinese patients with nonsyndromic hearing loss (NSHL). PATIENT CONCERNS: This includes a young deaf couple and their 2-year-old baby. DIAGNOSES: Based on the clinical information, hearing test, metagenomic next-generation sequencing (mNGS), Sanger sequencing, protein function and structure analysis, and model prediction, in our case, the study results revealed 2 heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) and the TBC1 domain family member 24 (TBC1D24) gene (c.1570C>T, p.Arg524Trp). These mutations may be responsible for the hearing loss observed in this family. Notably, the heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) have not been previously reported in the literature. INTERVENTIONS: Avoid taking drugs that can cause deafness, wearing hearing AIDS, and cochlear implants. OUTCOMES: Regular follow-up of family members is ongoing. LESSONS: The genetic diagnosis of NSHL holds significant importance as it helps in making informed treatment decisions, providing prognostic information, and offering genetic counseling for the patient's family.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Humanos , Preescolar , Sordera/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva/genética , Mutación , China , Linaje , Proteínas Activadoras de GTPasa/genética
4.
BMC Med Genomics ; 17(1): 94, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641846

RESUMEN

BACKGROUND: Copy number variations (CNVs) have emerged as significant contributors to the elusive genetic causality of inherited eye diseases. In this study, we describe a case with optic atrophy and a brain aneurysm, in which a de novo CNV 3q29 deletion was identified. CASE PRESENTATION: A 40-year-old female patient was referred to our department after undergoing aneurysm transcatheter arterial embolization for a brain aneurysm. She had no history of systemic diseases, except for unsatisfactory best-corrected visual acuity (BCVA) since elementary school. Electrophysiological tests confirmed the findings in retinal images, indicating optic nerve atrophy. Chromosomal microarray analysis revealed a de novo deletion spanning 960 kb on chromosome 3q29, encompassing OPA1 and six neighboring genes. Unlike previously reported deletions in this region associated with optic atrophy, neuropsychiatric disorders, and obesity, this patient displayed a unique combination of optic atrophy and a brain aneurysm. However, there is no causal relationship between the brain aneurysm and the CNV. CONCLUSION: In conclusion, the optic atrophy is conclusively attributed to the OPA1 deletion, and the aneurysm could be a coincidental association. The report emphasizes the likelihood of underestimating OPA1 deletions due to sequencing technology limitations. Recognizing these constraints, healthcare professionals must acknowledge these limitations and consistently search for OPA1 variants/deletions in Autosomal Dominant Optic Atrophy (ADOA) patients with negative sequencing results. This strategic approach ensures a more comprehensive exploration of copy-number variations, ultimately enhancing diagnostic precision in the field of genetic disorders.


Asunto(s)
Aneurisma Intracraneal , Atrofia Óptica , Femenino , Humanos , Adulto , Mutación , Variaciones en el Número de Copia de ADN , Aneurisma Intracraneal/genética , Atrofia Óptica/genética , Fenotipo , Cromosomas , Linaje , GTP Fosfohidrolasas/genética
5.
Mol Biol Rep ; 51(1): 536, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642155

RESUMEN

OBJECTIVES: This study aimed to identify the causative variants in a patient with Waardenburg syndrome (WS) type 2 using whole exome sequencing (WES). METHODS: The clinical features of the patient were collected. WES was performed on the patient and his parents to screen causative genetic variants and Sanger sequencing was performed to validate the candidate mutation. The AlphaFold2 software was used to predict the changes in the 3D structure of the mutant protein. Western blotting and immunocytochemistry were used to determine the SOX10 mutant in vitro. RESULTS: A de novo variant of SOX10 gene, NM_006941.4: c.707_714del (p. H236Pfs*42), was identified, and it was predicted to disrupt the wild-type DIM/HMG conformation in SOX10. In-vitro analysis showed an increased level of expression of the mutant compared to the wild-type. CONCLUSIONS: Our findings helped to understand the genotype-phenotype association in WS2 cases with SOX10 mutations.


Asunto(s)
Síndrome de Waardenburg , Niño , Humanos , Síndrome de Waardenburg/genética , Linaje , Mutación/genética , Factores de Transcripción SOXE/genética , China
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 437-442, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38565509

RESUMEN

OBJECTIVE: To explore the clinical phenotype and genetic characteristics of a Chinese pedigree affected with Spastic paraplegia type 5A (SPG5A). METHODS: A pedigree suspected for Hereditary spastic paraplegia (HSP) at Henan Children's Hospital on August 15 2022 was selected as the study subject. Clinical data of the pedigree was collected. Peripheral blood samples were collected from members of the pedigree. Following extraction of genomic DNA, trio-WGS was carried out, and candidate variant was verified by Sanger sequencing. RESULTS: The child, a 1-year-old boy, had presented with microcephaly, hairy face and dorsal side of distal extremities and trunk, intellectual and motor development delay, increased muscle tone of lower limbs, hyperreflexes of bilateral knee tendons, and positive pathological signs. His parents and sister both had normal phenotypes. Trio-WGS revealed that the child has harbored a homozygous c.1250G>A (p.Arg417His) variant of the CYP7B1 gene, for which his mother was heterozygous, the father and sister were of the wild type. The variant was determined to have originated from maternal uniparental disomy (UPD). The result of Sanger sequencing was in keeping with the that of trio-WGS. SPG5A due to maternal UPD of chromosome 8 was unreported previously. CONCLUSION: The child was diagnosed with SPG5A, a complex type of HSP, for which the homozygous c.1250G>A variant of the CYP7B1 gene derived from maternal UPD may be accountable.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Lactante , Masculino , China , Mutación , Paraplejía/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética
7.
Curr Med Sci ; 44(2): 419-425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619684

RESUMEN

OBJECTIVE: Autosomal recessive bestrophinopathy (ARB), a retinal degenerative disease, is characterized by central visual loss, yellowish multifocal diffuse subretinal deposits, and a dramatic decrease in the light peak on electrooculogram. The potential pathogenic mechanism involves mutations in the BEST1 gene, which encodes Ca2+-activated Cl- channels in the retinal pigment epithelium (RPE), resulting in degeneration of RPE and photoreceptor. In this study, the complete clinical characteristics of two Chinese ARB families were summarized. METHODS: Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing was performed on the probands to screen for disease-causing gene mutations, and Sanger sequencing was applied to validate variants in the patients and their family members. RESULTS: Two novel mutations, c.202T>C (chr11:61722628, p.Y68H) and c.867+97G>A, in the BEST1 gene were identified in the two Chinese ARB families. The novel missense mutation BEST1 c.202T>C (p.Y68H) resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1. Another novel variant, BEST1 c.867+97G>A (chr11:61725867), located in intron 7, might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators. CONCLUSION: Our findings represent the first use of third-generation sequencing (TGS) to identify novel BEST1 mutations in patients with ARB, indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes. The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Canales de Cloruro , Enfermedades Hereditarias del Ojo , Enfermedades de la Retina , Humanos , Bestrofinas/genética , Bestrofinas/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Fenotipo , Linaje , Inhibidores de la Enzima Convertidora de Angiotensina
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 393-398, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38565502

RESUMEN

OBJECTIVE: To analyze the types of genetic variants and clinical characteristics of three Chinese pedigrees affected with Hereditary coagulation factor Ⅶ (FⅦ) deficiency. METHODS: Three pedigrees who had visited the First Affiliated Hospital of Wenzhou Medical University between December 2021 and October 2022 were selected as the study subjects. Prothrombin time (PT), activated partial thromboplastin time (APTT) and FⅦ activity (FⅦ:C) were measured in the three probands and their pedigree members. All exons and their flanking sequences were analyzed by direct sequencing, and candidate variants were verified by reverse sequencing. The corresponding variant loci in the family members were also analyzed. ClustalX-2.1-win was used to analyze the conservation of the variant loci. Varcards and Spcards online software was used to predict the pathogenicity of the variants. Pymol software was used to analyze the changes in protein structure and molecular forces. RESULTS: Three cases of hereditary FⅦ deficiency were found to have decreased FⅦ:C, prolonged PT and normal APTT. Genetic analysis identified a total of four genetic variants, and all three probands had harbored compound heterozygous variants of the F7 gene, including p.Cys389Gly and p.His408Gln in proband 1, p.Cys389Gly and IVS6+1G>T in proband 2, and IVS6+1G>T and IVS1a+5G>A in proband 3. Conservation analysis showed that both the p.Cys389 and p.His408 loci are highly conserved among orthologous species. Analysis with Varcards and Spcards software showed that these variants were pathogenic. Protein modeling analysis showed that the p.Cys389Gly and p.His408Gln variants may result in altered protein structures and changes in hydrogen bonds. CONCLUSION: The clinical manifestations of the three FⅦ-deficient probands may be attributed to the compound heterozygous variants of p.Cys389Gly/p.His408Gln, p.Cys389Gly/IVS6+1G>T and IVS6+1G>T/IVS1a+5G>A of the F7 gene. The combination of the three compound heterozygous variants was unreported previously.


Asunto(s)
Deficiencia del Factor VII , Humanos , Linaje , Heterocigoto , Deficiencia del Factor VII/genética , Mutación , Factor VII/genética , China
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 443-449, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38565510

RESUMEN

OBJECTIVE: To explore the clinical manifestations and genetic basis for a Chinese pedigree affected with atypical Charcot-Marie-Tooth disease type 1 A (CMT1A). METHODS: A patient admitted to the Department of Neurology, Xijing Hospital Affiliated to Air Force Medical University in June 2022 was selected as the study subject. Clinical data of the patient was collected, and 17 family members from four generations of this pedigree were traced based on pes arcuatus and atypical clinical symptoms. Neuroultrasound and genetic testing were carried out on available family members. Whole exome sequencing and multiple ligation-dependent probe amplification assay were carried out for the proband and some of the affected members of the pedigree. RESULTS: The proband, a 15-year-old male, had presented with paroxystic limb pain with weakness, accompanied by pes cavus and hypertrophy of gastrocnemius muscles, without stork leg sign caused by muscles atrophy in the distal lower extremities. MRI has revealed no sign of fat infiltration in the muscles of both legs. Nerve conduction examination had indicated damages of the sensory and motor nerves of the limbs, mainly with demyelinating changes. Seven members of the pedigree had pes arcuatus, including 5 presenting with paroxysmal neuropathic pain and myasthenia in the limbs, whilst 2 were without any clinical symptoms. Neurosonography of the proband, his brother, father and aunt showed thickened peripheral nerves of the extremities with unclear bundle structure. Genetic analysis revealed a large repeat encompassing exons 1 to 5 of the PMP22 gene and flanking regions (chr17: 15133768_15502298) in some of the affected members, which was predicted to be pathogenic. CONCLUSION: The duplication of PMP22 gene was considered to be pathogenic for this CMT1A pedigree.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Masculino , Humanos , Adolescente , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Linaje , Proteínas de la Mielina/genética , Músculo Esquelético , China , Duplicación de Gen
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 467-472, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38565514

RESUMEN

OBJECTIVE: To analyze the clinical phenotype and genotypes of two children with Carnitine-acylcarnitine translocase deficiency (CACTD). METHODS: Two children diagnosed with CACTD at the Gansu Provincial Maternal and Child Health Care Hospital respectively on January 3 and November 19, 2018 were selected as the study subjects. Trio-whole exome sequencing (trio-WES) was carried out, and candidate variants were validated through Sanger sequencing and pathogenicity analysis. RESULTS: Both children were males and had manifested mainly with hypoglycemia. Trio-WES and Sanger sequencing showed that child 1 had harbored compound heterozygous variants of the SLC25A20 gene, namely c.49G>C (p.Gly17Arg) and c.106-2A>G, which were inherited from his father and mother, respectively. Child 2 had harbored homozygous c.199-10T>G variants of the SLC25A20 gene, which were inherited from both of his parents. Among these, the c.106-2A>G and c.49G>C variants were unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.49G>C (p.Gly17Arg), c.106-2A>G, and c.199-10T>G variants were classified as likely pathogenic (PM2_supporting+PP3+PM3_strong+PP4), pathogenic (PVS1+PM2_supporting+PM5+PP3), and pathogenic (PVS1+PM2_supporting+PP3+PP5), respectively. CONCLUSION: Combined with their clinical phenotype and genetic analysis, both children were diagnosed with CACTD. Above finding has provided a basis for their treatment as well as genetic counseling and prenatal diagnosis for their families.


Asunto(s)
Carnitina Aciltransferasas/deficiencia , Asesoramiento Genético , Genómica , Errores Innatos del Metabolismo Lipídico , Niño , Masculino , Femenino , Embarazo , Humanos , Linaje , Madres , Mutación , Proteínas de Transporte de Membrana
11.
Invest Ophthalmol Vis Sci ; 65(4): 1, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558095

RESUMEN

Purpose: The purpose of this study is to report five novel FZD4 mutations identified in familial exudative vitreoretinopathy (FEVR) and to analyze and summarize the pathogenic mechanisms of 34 of 96 reported missense mutations in FZD4. Methods: Five probands diagnosed with FEVR and their family members were enrolled in the study. Ocular examinations and targeted gene panel sequencing were conducted on all participants. Plasmids, each carrying 29 previously reported FZD4 missense mutations and five novel mutations, were constructed based on the selection of mutations from each domain of FZD4. These plasmids were used to investigate the effects of mutations on protein expression levels, Norrin/ß-catenin activation capacity, membrane localization, norrin binding ability, and DVL2 recruitment ability in HEK293T, HEK293STF, and HeLa cells. Results: All five novel mutations (S91F, V103E, C145S, E160K, C377F) responsible for FEVR were found to compromise Norrin/ß-catenin activation of FZD4 protein. After reviewing a total of 34 reported missense mutations, we categorized all mutations based on their functional changes: signal peptide mutations, cysteine mutations affecting disulfide bonds, extracellular domain mutations influencing norrin binding, transmembrane domain (TM) 1 and TM7 mutations impacting membrane localization, and intracellular domain mutations affecting DVL2 recruitment. Conclusions: We expanded the spectrum of FZD4 mutations relevant to FEVR and experimentally demonstrated that missense mutations in FZD4 can be classified into five categories based on different functional changes.


Asunto(s)
Enfermedades de la Retina , beta Catenina , Humanos , Vitreorretinopatías Exudativas Familiares , beta Catenina/metabolismo , Enfermedades de la Retina/patología , Células HEK293 , Células HeLa , Receptores Frizzled/genética , Mutación , Linaje , Análisis Mutacional de ADN , Tetraspaninas/genética
12.
Mol Vis ; 30: 58-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601016

RESUMEN

Purpose: Pathogenic variants in North Carolina macular dystrophy (NCMD) have rarely been reported in the East Asian population. Herein, we reported novel variants of NCMD in 2 Korean families. Methods: The regions associated with NCMD were analyzed with genome sequencing, and variants were filtered based on the minor allele frequency (0.5%) and heterozygosity. Non-coding variants were functionally annotated using multiple computational tools. Results: We identified two rare novel variants, chr6:g.99,598,914T>C (hg38; V17) and chr6:g.99,598,926G>A (hg38; V18) upstream of PRDM13 in families A and B, respectively. In Family 1, Grade 2 NCMD and a best-corrected visual acuity of 20/25 and 20/200 in the right and left eyes, respectively, were observed. In Family B, all affected individuals had Grade 1 NCMD with characteristic confluent drusen at the fovea and a best-corrected visual acuity of 20/20 in both eyes. These two variants are 10-22 bp downstream of the reported V10 variant within the DNase1 hypersensitivity site. This site is associated with progressive bifocal chorioretinal atrophy and congenital posterior polar chorioretinal hypertrophy and lies in the putative enhancer site of PRDM13. Conclusion: We identified two novel NCMD variants in the Korean population and further validated the regulatory role of the DNase1 hypersensitivity site upstream of PRDM13.


Asunto(s)
Distrofias Hereditarias de la Córnea , Humanos , Distrofias Hereditarias de la Córnea/genética , Fóvea Central , Nucleótidos , Linaje , República de Corea
13.
BMC Ophthalmol ; 24(1): 167, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622537

RESUMEN

PURPOSE: The goal of the study was to search for novel bi-allelic CRB1 mutations, and then to analyze the CRB1 literature at the genotypic and phenotypic levels. APPROACH: We screened various variables such as the CRB1 mutation types, domains, exons, and genotypes and their relation with specific ocular phenotypes. An emphasis was given to the bi-allelic missense and nonsense mutations because of their high prevalence compared to other mutation types. Finally, we quantified the effect of various non-modifiable factors over the best-corrected visual acuity oculus uterque (BCVA OU) using multivariate linear regression models and identified genetic interactions. RESULTS: A novel bi-allelic missense in the exon 9 of CRB1; c.2936G > A; p.(Gly979Asp) was found to be associated with rod-cone dystrophy (RCD). CRB1 mutation type, exons, domains, and genotype distribution varied significantly according to fundus characteristics, such as peripheral pigmentation and condition, optic disc, vessels, macular condition, and pigmentation (P < 0.05). Of the 154 articles retrieved from PubMed, 96 studies with 439 bi-allelic CRB1 patients were included. Missense mutations were significantly associated with an absence of macular pigments, pale optic disc, and periphery pigmentation, resulting in a higher risk of RCD (P < 0.05). In contrast, homozygous nonsense mutations were associated with macular pigments, periphery pigments, and a high risk of LCA (P < 0.05) and increased BCVA OU levels. We found that age, mutation types, and inherited retinal diseases were critical determinants of BCVA OU as they significantly increased it by 33% 26%, and 38%, respectively (P < 0.05). Loss of function alleles additively increased the risk of LCA, with nonsense having a more profound effect than indels. Finally, our analysis showed that p.(Cys948Tyr) and p.(Lys801Ter) and p.(Lys801Ter); p.(Cys896Ter) might interact to modify BCVA OU levels. CONCLUSION: This meta-analysis updated the literature and identified genotype-phenotype associations in bi-allelic CRB1 patients.


Asunto(s)
Codón sin Sentido , Proteínas del Tejido Nervioso , Humanos , Alelos , Proteínas del Tejido Nervioso/genética , Estudios de Asociación Genética , Retina , Fenotipo , Mutación , Proteínas del Ojo/genética , Linaje , Análisis Mutacional de ADN , Proteínas de la Membrana/genética
14.
BMC Med Genomics ; 17(1): 89, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627775

RESUMEN

OBJECTIVE: Branchio-oto-renal syndrome (BOR, OMIM#113,650) is a rare autosomal dominant disorder that presents with a variety of symptoms, including hearing loss (sensorineural, conductive, or mixed), structural abnormalities affecting the outer, middle, and inner ear, branchial fistulas or cysts, as well as renal abnormalities.This study aims to identify the pathogenic variants by performing genetic testing on a family with Branchio-oto-renal /Branchio-otic (BO, OMIM#602,588) syndrome using whole-exome sequencing, and to explore possible pathogenic mechanisms. METHODS: The family spans 4 generations and consists of 9 individuals, including 4 affected by the BOR/BO syndrome. Phenotypic information, including ear malformation and branchial cleft, was collected from family members. Audiological, temporal bone imaging, and renal ultrasound examinations were also performed. Whole-exome sequencing was conducted to identify candidate pathogenic variants and explore the underlying molecular etiology of BOR/BO syndrome by minigene experiments. RESULTS: Intra-familial variability was observed in the clinical phenotypes of BOR/BO syndrome in this family. The severity and nature of hearing loss varied in family members, with mixed or sensorineural hearing loss. The proband, in particular, had profound sensorineural hearing loss on the left and moderate conductive hearing loss on the right. Additionally, the proband exhibited developmental delay, and her mother experienced renal failure during pregnancy and terminated the pregnancy prematurely. Genetic testing revealed a novel heterozygous variant NM_000503.6: c.639 + 3 A > C in the EYA1 gene in affected family members. In vitro minigene experiments demonstrated its effect on splicing. According to the American College of Medical Genetics (ACMG) guidelines, this variant was classified as likely pathogenic. CONCLUSION: This study highlights the phenotypic heterogeneity within the same family, reports the occurrence of renal failure and adverse pregnancy outcomes in a female patient at reproductive age with BOR syndrome, and enriches the mutational spectrum of pathogenic variants in the EYA1 gene.


Asunto(s)
Síndrome Branquio Oto Renal , Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Insuficiencia Renal , Humanos , Embarazo , Femenino , Síndrome Branquio Oto Renal/genética , Síndrome Branquio Oto Renal/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Tirosina Fosfatasas/genética , Pérdida Auditiva/genética , Linaje , Proteínas Nucleares/genética
15.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38576313

RESUMEN

Accurate genetic parameters are crucial for predicting breeding values and selection responses in breeding programs. Genetic parameters change with selection, reducing additive genetic variance and changing genetic correlations. This study investigates the dynamic changes in genetic parameters for residual feed intake (RFI), gain (GAIN), breast percentage (BP), and femoral head necrosis (FHN) in a broiler population that undergoes selection, both with and without the use of genomic information. Changes in single nucleotide polymorphism (SNP) effects were also investigated when including genomic information. The dataset containing 200,093 phenotypes for RFI, 42,895 for BP, 203,060 for GAIN, and 63,349 for FHN was obtained from 55 mating groups. The pedigree included 1,252,619 purebred broilers, of which 154,318 were genotyped with a 60K Illumina Chicken SNP BeadChip. A Bayesian approach within the GIBBSF90 + software was applied to estimate the genetic parameters for single-, two-, and four-trait models with sliding time intervals. For all models, we used genomic-based (GEN) and pedigree-based approaches (PED), meaning with or without genotypes. For GEN (PED), heritability varied from 0.19 to 0.2 (0.31 to 0.21) for RFI, 0.18 to 0.11 (0.25 to 0.14) for GAIN, 0.45 to 0.38 (0.61 to 0.47) for BP, and 0.35 to 0.24 (0.53 to 0.28) for FHN, across the intervals. Changes in genetic correlations estimated by GEN (PED) were 0.32 to 0.33 (0.12 to 0.25) for RFI-GAIN, -0.04 to -0.27 (-0.18 to -0.27) for RFI-BP, -0.04 to -0.07 (-0.02 to -0.08) for RFI-FHN, -0.04 to 0.04 (0.06 to 0.2) for GAIN-BP, -0.17 to -0.06 (-0.02 to -0.01) for GAIN-FHN, and 0.02 to 0.07 (0.06 to 0.07) for BP-FHN. Heritabilities tended to decrease over time while genetic correlations showed both increases and decreases depending on the traits. Similar to heritabilities, correlations between SNP effects declined from 0.78 to 0.2 for RFI, 0.8 to 0.2 for GAIN, 0.73 to 0.16 for BP, and 0.71 to 0.14 for FHN over the eight intervals with genomic information, suggesting potential epistatic interactions affecting genetic trait architecture. Given rapid genetic architecture changes and differing estimates between genomic and pedigree-based approaches, using more recent data and genomic information to estimate variance components is recommended for populations undergoing genomic selection to avoid potential biases in genetic parameters.


Genetic parameters are used to predict breeding values for individuals in breeding programs undergoing selection. However, inaccurate genetic parameters can cause breeding values to be biased, and genetic parameters can change over time due to multiple factors. This study aimed to investigate how genetic parameters changed over time in a broiler population using time intervals and observing the behavior of single nucleotide polymorphism (SNP) effects. We studied four traits related to production and disorders while also studying the impact of using genomic information on the estimates. Genetic variances showed an overall decreasing trend, whereas residual variances increased during each interval, resulting in decreasing heritability estimates. Genetic correlations between traits varied but with no major changes over time. Estimates tended to be lower when genomic information was included in the analysis. SNP effects showed changes over time, indicating changes to the genetic background of this population. Using outdated variance components in a population under selection may not represent the current population. Furthermore, when genomic selection is practiced, accounting for this information while estimating variance components is important to avoid biases.


Asunto(s)
Pollos , Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Pollos/genética , Masculino , Femenino , Cruzamiento , Linaje , Genotipo , Enfermedades de las Aves de Corral/genética , Genómica , Fenotipo , Teorema de Bayes , Modelos Genéticos
16.
Sci Rep ; 14(1): 8326, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594301

RESUMEN

The MYO7A gene is known to be responsible for both syndromic hearing loss (Usher syndrome type1B:USH1B) and non-syndromic hearing loss including autosomal dominant and autosomal recessive inheritance (DFNA11, DFNB2). However, the prevalence and detailed clinical features of MYO7A-associated hearing loss across a large population remain unclear. In this study, we conducted next-generation sequencing analysis for a large cohort of 10,042 Japanese hearing loss patients. As a result, 137 patients were identified with MYO7A-associated hearing loss so that the prevalence among Japanese hearing loss patients was 1.36%. We identified 70 disease-causing candidate variants in this study, with 36 of them being novel variants. All variants identified in autosomal dominant cases were missense or in-frame deletion variants. Among the autosomal recessive cases, all patients had at least one missense variant. On the other hand, in patients with Usher syndrome, almost half of the patients carried biallelic null variants (nonsense, splicing, and frameshift variants). Most of the autosomal dominant cases showed late-onset progressive hearing loss. On the other hand, cases with autosomal recessive inheritance or Usher syndrome showed congenital or early-onset hearing loss. The visual symptoms in the Usher syndrome cases developed between age 5-15, and the condition was diagnosed at about 6-15 years of age.


Asunto(s)
Pérdida Auditiva Sensorineural , Síndromes de Usher , Humanos , Preescolar , Niño , Adolescente , Síndromes de Usher/epidemiología , Síndromes de Usher/genética , Prevalencia , Miosinas/genética , Miosina VIIa/genética , Mutación , Linaje
17.
BMJ Case Rep ; 17(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38631813

RESUMEN

A man in his 30s was referred to neurology with right-sided paraesthesia, tremors, chest pain and lower urinary tract and erectile dysfunction. He had a medical history of left acetabular dysplasia, and subjective memory impairment, the latter being in the context of depression and chronic pain with opioid use. There was no notable family history. On examination, he had a spastic paraparesis. Imaging revealed atrophy of the thoracic spine. Lumbar puncture demonstrated a raised protein but other constituents were normal, including no presence of oligoclonal bands. Genetic testing revealed a novel heterozygous likely pathogenic SPAST variant c. 1643A>T p.(Asp548Val), confirming the diagnosis of hereditary spastic paraparesis. Symptomatic treatment with physiotherapy and antispasmodic therapy was initiated. This is the first study reporting a patient with this SPAST variant. Ensembl variant effect predictor was used, with the application of computational variant prediction tools providing support that the variant we have identified is likely deleterious and damaging. Our variant CADD score was high, indicating that our identified variant was a highly deleterious substitution.


Asunto(s)
Paraparesia Espástica , Paraplejía Espástica Hereditaria , Masculino , Humanos , Paraparesia Espástica/genética , Paraplejía Espástica Hereditaria/genética , Linaje , Proteínas/genética , Pruebas Genéticas , Mutación , Espastina/genética
18.
BMC Med Genomics ; 17(1): 95, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643142

RESUMEN

NSUN2-intellectual disability syndrome, also known as intellectual disability type 5 (MRT5), is an autosomal recessive disorder that is characterized by intellectual disability (ID), postnatal growth retardation, dysmorphic facies, microcephaly, short stature, developmental delay, language impairment and other congenital abnormalities. The disease is caused by mutations in the NSUN2 gene, which encodes a tRNA cytosine methyltransferase that has an important role in spindle assembly during mitosis and chromosome segregation. In this study, we recruited a family that had two individuals with ID. Whole exome sequencing was performed to identify a homozygous frameshift variant (c.1171_1175delACCAT(p.Thr391fs*18*)) in NSUN2 (NM_017755.5) in the proband. The varint was confirmed as segregating in his affected brother and his parents by Sanger sequencing. The individuals that we described showed a similar dysmorphology profile to that associated with MRT5. To analyze the correlations between genotypes of NSUN2 and phenotypes of individuals with ID, we examined 17 variants and the associated phenotypes from 32 ID individuals in current and previous studies. We concluded that mutations in NSUN2 cause a wide range of phenotypic defects. Although some clinical manifestations were highly variable, the core phenotypes associated with NSUN2 mutations were dysmorphic facies, microcephaly, short stature, ID, growth restriction, language impairment, hypotonia and delayed puberty. Our study expands the genetic spectrum of NSUN2 mutations and helps to further define the genotype-phenotype correlations in MRT5.


Asunto(s)
Enanismo , Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Microcefalia , Malformaciones del Sistema Nervioso , Masculino , Humanos , Discapacidad Intelectual/genética , Microcefalia/genética , Facies , Mutación , Fenotipo , China , Linaje , Metiltransferasas/genética
19.
Genet Test Mol Biomarkers ; 28(4): 151-158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38657121

RESUMEN

Introduction: Approximately 80% of primary hyperoxaluria cases are caused by primary hyperoxaluria type 1 (PH1, OMIM# 259900), which is characterized by pathogenic variants in the AGXT gene, resulting in deficiency of the liver-specific enzyme alanine-glyoxylate aminotransferase (AGT). This leads to increased production of oxalate, which cannot be effectively eliminated from the body, resulting in its accumulation primarily in the kidneys and other organs. Subjects and Methods: This study included 17 PH1 Egyptian patients from 12 unrelated families, recruited from the Inherited Kidney Disease Outpatient Clinic and the Dialysis Units, Cairo University Hospitals, during the period from January 2018 to December 2019, aiming to identify the pathogenic variants in the AGXT gene. Results: Six different variants were detected. These included three frameshift and three missense variants, all found in homozygosity within the respective families. The most common variant was c.121G>A;p.(Gly41Arg) detected in four families, followed by c.725dup;p.(Asp243GlyfsTer12) in three families, c.33dup;p.(Lys12Glnfs156) in two families, and c.731T >C;p.(Ile244Thr), c.33delC;p.(Lys12Argfs34), and c.568G>A;p.(Gly190Arg) detected in one family each. Conclusion: Consanguineous Egyptian families with history of renal stones or renal disease suspicious of primary hyperoxaluria should undergo AGXT genetic sequencing, specifically targeting exons 1 and 7, as variants in these two exons account for >75% of disease-causing variants in Egyptian patients with confirmed PH1.


Asunto(s)
Hiperoxaluria Primaria , Transaminasas , Humanos , Hiperoxaluria Primaria/genética , Egipto , Femenino , Masculino , Transaminasas/genética , Transaminasas/metabolismo , Niño , Preescolar , Adulto , Adolescente , Mutación Missense/genética , Homocigoto , Mutación , Mutación del Sistema de Lectura/genética , Linaje , Lactante
20.
BMC Med Genomics ; 17(1): 104, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659011

RESUMEN

BACKGROUND: Waardenburg syndrome type 2 (WS2) has been reported to be a rare hereditary disorder, which is distinguished by vivid blue eyes, varying degrees of hearing impairment, and abnormal pigment deposition in the skin and hair. Variants in the sex-determining region Y-box containing gene 10 (SOXl0) gene may cause congenital deafness and have been demonstrated to be important during the development of WS2. METHODS: Complete clinical data of the proband and her family members (her parents and 2 sisters) was collected and physical examinations were performed in the hospital. The laboratory examination including hemoglobin, Coomb's test, urine protein, ENA, autoimmune hepatitis-related autoantibodies and ultrasonography were all conducted. We obtained the peripheral blood samples from all the participants and performed whole exome sequencing and sanger sequencing validation. RESULTS: The present study identified a family of 5 members, and only the proband exhibited typical WS2. Beyond the characteristics of WS2, the proband also manifested absence of puberty. The proband and her younger sister manifested systemic lupus erythematosus (SLE). Whole exome sequencing revealed a de novo variant in the SOX10 gene. The variant c.175 C > T was located in exon 2 of the SOX10 gene, which is anticipated to result in early termination of protein translation. CONCLUSION: The present study is the first to report a case of both WS2 and SLE, and the present findings may provide a new insight into WS2.


Asunto(s)
Linaje , Factores de Transcripción SOXE , Síndrome de Waardenburg , Humanos , Síndrome de Waardenburg/genética , Factores de Transcripción SOXE/genética , Femenino , Masculino , Adulto , Secuenciación del Exoma , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...